Estimates for Eigenvalues of the Schrödinger Operator with a Complex Potential

نویسنده

  • OLEG SAFRONOV
چکیده

We study the distribution of eigenvalues of the Schrödinger operator with a complex valued potential V . We prove that if |V | decays faster than the Coulomb potential, then all eigenvalues are in a disc of a finite radius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Eigenvalues of the Discrete One-dimensional Schrödinger Operator with a Complex Potential

We study the eigenvalues of the discrete Schrödinger operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.

متن کامل

Universal Bounds for Eigenvalues of Schrödinger Operator on Riemannian Manifolds

Abstract. In this paper we consider eigenvalues of Schrödinger operator with a weight on compact Riemannian manifolds with boundary (possibly empty) and prove a general inequality for them. By using this inequality, we study eigenvalues of Schrödinger operator with a weight on compact domains in a unit sphere, a complex projective space and a minimal submanifold in a Euclidean space. We also st...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Inverse nodal problem for p-Laplacian with two potential functions

In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...

متن کامل

Schrödinger operators with n positive eigenvalues: an explicit construction involving complex valued potentials

An explicit construction is provided for embedding n positive eigenvalues in the spectrum of a Schrödinger operator on the half-line with a Dirichlet boundary condition at the origin. The resulting potential is of von Neumann-Wigner type, but can be real valued as well as complex valued.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009